4 resultados para Scheduling

em Massachusetts Institute of Technology


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two methods of obtaining approximate solutions to the classic General Job-shop Scheduling Program are investigated. The first method is iterative. A sampling of the solution space is used to decide which of a collection of space pruning constraints are consistent with "good" schedules. The selected space pruning constraints are then used to reduce the search space and the sampling is repeated. This approach can be used either to verify whether some set of space pruning constraints can prune with discrimination or to generate solutions directly. Schedules can be represented as trajectories through a Cartesian space. Under the objective criteria of Minimum maximum Lateness family of "good" schedules (trajectories) are geometric neighbors (reside with some "tube") in this space. This second method of generating solutions takes advantage of this adjacency by pruning the space from the outside in thus converging gradually upon this "tube." One the average this methods significantly outperforms an array of the Priority Dispatch rules when the object criteria is that of Minimum Maximum Lateness. It also compares favorably with a recent relaxation procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scheduling tasks to efficiently use the available processor resources is crucial to minimizing the runtime of applications on shared-memory parallel processors. One factor that contributes to poor processor utilization is the idle time caused by long latency operations, such as remote memory references or processor synchronization operations. One way of tolerating this latency is to use a processor with multiple hardware contexts that can rapidly switch to executing another thread of computation whenever a long latency operation occurs, thus increasing processor utilization by overlapping computation with communication. Although multiple contexts are effective for tolerating latency, this effectiveness can be limited by memory and network bandwidth, by cache interference effects among the multiple contexts, and by critical tasks sharing processor resources with less critical tasks. This thesis presents techniques that increase the effectiveness of multiple contexts by intelligently scheduling threads to make more efficient use of processor pipeline, bandwidth, and cache resources. This thesis proposes thread prioritization as a fundamental mechanism for directing the thread schedule on a multiple-context processor. A priority is assigned to each thread either statically or dynamically and is used by the thread scheduler to decide which threads to load in the contexts, and to decide which context to switch to on a context switch. We develop a multiple-context model that integrates both cache and network effects, and shows how thread prioritization can both maintain high processor utilization, and limit increases in critical path runtime caused by multithreading. The model also shows that in order to be effective in bandwidth limited applications, thread prioritization must be extended to prioritize memory requests. We show how simple hardware can prioritize the running of threads in the multiple contexts, and the issuing of requests to both the local memory and the network. Simulation experiments show how thread prioritization is used in a variety of applications. Thread prioritization can improve the performance of synchronization primitives by minimizing the number of processor cycles wasted in spinning and devoting more cycles to critical threads. Thread prioritization can be used in combination with other techniques to improve cache performance and minimize cache interference between different working sets in the cache. For applications that are critical path limited, thread prioritization can improve performance by allowing processor resources to be devoted preferentially to critical threads. These experimental results show that thread prioritization is a mechanism that can be used to implement a wide range of scheduling policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an optimal methodology for synchronized scheduling of production assembly with air transportation to achieve accurate delivery with minimized cost in consumer electronics supply chain (CESC). This problem was motivated by a major PC manufacturer in consumer electronics industry, where it is required to schedule the delivery requirements to meet the customer needs in different parts of South East Asia. The overall problem is decomposed into two sub-problems which consist of an air transportation allocation problem and an assembly scheduling problem. The air transportation allocation problem is formulated as a Linear Programming Problem with earliness tardiness penalties for job orders. For the assembly scheduling problem, it is basically required to sequence the job orders on the assembly stations to minimize their waiting times before they are shipped by flights to their destinations. Hence the second sub-problem is modelled as a scheduling problem with earliness penalties. The earliness penalties are assumed to be independent of the job orders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of jointly determining shipment planning and scheduling decisions with the presence of multiple shipment modes. We consider long lead time, less expensive sea shipment mode, and short lead time but expensive air shipment modes. Existing research on multiple shipment modes largely address the short term scheduling decisions only. Motivated by an industrial problem where planning decisions are independent of the scheduling decisions, we investigate the benefits of integrating the two sets of decisions. We develop sequence of mathematical models to address the planning and scheduling decisions. Preliminary computational results indicate improved performance of the integrated approach over some of the existing policies used in real-life situations.